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Let A4 :=(4;){_, be a sequence of distinct nonnegative real numbers with 1, :=0
and >, 1/, <oo. Let (0, 1) and e (0, 1 —g) be fixed. An earlier work of the
authors shows that

C(A, & 0) :=sup{lIpl (oo : pEspan{xe, x*, .},
m({xele, 1] |p(x)|<1})>e}

is finite. In this paper an explicit upper bound for C(4, ¢, ¢) is given. In the special
case A, :=k* a>1, our bounds are essentially sharp.  © 1998 Academic Press

1. INTRODUCTION

In this paper 4:=(4,)7_, always denotes a sequence of real numbers
satisfying

0=Ap <A <Ay< ---.
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In [ 1] a Remez-type inequality for Miintz polynomials
p(x)= ) apx™
k=0
or equivalently for Dirichlet sums

P(t)=Y aje "
k=0

is established. The most useful form of this inequality states that for every
sequence (A,)g_, satisfying > 2, 1/4, < oo, there exists a constant C(4, &)
depending only on A and ¢ (and not on n, ¢, or 4) so that

IPllto. o1 < C(A, &) lIpll 4

for every Miintz polynomial p, as above, associated with the sequence
(L))o, and for every set 4 <[, 1] of Lebesgue measure at least ¢> 0.
Throughout this paper | .|| , denotes the uniform norm on 4 < R.

Using this Remez-type inequality, we resolved two reasonably long
standing conjectures in [ 1]. In this paper we give an explicit upper bound
for the best possible C(4, ¢) in the above Remez-type inequality for non-
dense Miintz spaces. Theorem 2.3 extends an inequality of Schwartz [4] in
two directions. Theorem 2.1 offers a more explicit bound for the sequences
A= (k*)F_,, a>1 The sharpness of the Remez-type inequality of
Theorem 2.1 is shown by Theorem 2.2.

2. RESULTS

THEOREM 2.1. Let A, :=k*, k=0,1, .., a>1. Let 0€(0,1), e€(0, 1 —p),
and ¢ < 1/2. There exists a constant c, >0 depending only on o so that

Ipll [0, 01 S eXP(Cagl/(l "N lpl 4

for every pespan{x’, x*, ..} and for every set A<=[g,1] of Lebesgue
measure at least ¢> 0.

The next theorem shows that the inequality of Theorem 2.1 is essentially
the best possible.

THEOREM 2.2. Let A, :=k* k=0,1,..., a«>1. For every o> 1 and
€ (0, 1/2], there exists a constant c¢,>0 depending only on a and Miintz
polynomials

0+#p=p, . espan{x™, x*, .}
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depending only on o and ¢ so that

|p(0)] = exp(c,e =) |pllpy -

Theorem 2.1 is a special case of the following more general, but less
explicit result.

THEOREM 2.3. Suppose 0=71y <A, <A< --- and Y. _, 1/l < o0. Let

0€(0,1) and ¢€(0,1—9). Let 6 := —3log(1 —¢). Let NeN be chosen so
that
> ﬂi<é.
k:N+1/“k 3
Let

)
O =Aly with A::ﬁ'

Then, with ¢ := ||t~ sint] g,

3¢ N 1
<= [] (24—
121 to. o3 5 < +0k> Pl 4

k=1

for every pespan{x*, x", ..} and for every set A<=[g,1] of Lebesque
measure at least ¢> 0.
3. LEMMAS

Our first lemma shows that C(A4,¢) in the Remez-type inequality is
related to a much simpler (Chebyshev-type) extremal problem. This is
proved in [1, 27.

Lemma 3.1. Suppose 0=y <l <Ay < ---, pe(0,1), and e (0,1 —p).
Then

sup{ [plo.o1: pespan{x™, x™, ..}, m{xe[o, 1]: |p(x)| <1} >¢}

0
=sup {M: pespan{x™, x*, .} }
Hp“[lfz:,l]

Our key lemma is the following.
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LEMMA 3.2. Suppose 0=ly<i <Ay<--- and Y[ _, 1/ <oo. Given
0€(0,1), let NeN be chosen so that
> oL<l
k=N+1 }'k 12
Let
A vith A 0
O 1= wi ==
k k 3N
Then
3 N
P <5 T (245 ) 1Pl
5 o = /(
for every Pespan{e "', e~ "', .} with ¢:= [t~ " sint] ).

In the proof of Lemma 3.2 we will need the following observation.

LEMMA 3.3, Let 0=Ag<A <A, < ---. Suppose
(1) FeE°nL,R);
(2) F(i2e)=0, k=1,2,.. (i is the imaginary unit),
(3) F(0)=1.

Then

|P(c0)] < IFN £y 1Pl Ly —5. 61
for every Pespan{e "' e "', .}.

An entire function f is called a function of exponential type o if there
exists a constant ¢ depending only on f so that

|f(z)| <cexp(d|z]), zeC.

The collection of all such entire functions of exponential type J is denoted
be E°. The Paley-Wiener Theorem (see, for example, [3]) characterizes
the functions F which can be written as the Fourier transform of some
function fe L,[ —0, 0]. We will need it in the proof of Lemma 3.3.

TueoreM (Paley-Wiener). Let de(0, 00). Then fe E°nLy(R) if and
only if there exists an f € L,[ —3, 0] so that

6 .
Fz)= j f(1) € d-.

—0
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The following comparison theorem for Miintz polynomials is proved in
[2]. We will need it in the proof of Theorem 2.3.

LemMA 3.4. Let A:=(A)¢_o and I':=(y;) ¢, be increasing sequences
of nonnegative real numbers with 1,=0, y,=0, and 1, <y, for each k. Let
0<a<b. Then

{ |p(0)] o oA A }
max { —————: p espan{x*, x*, ..., x
HPH[a,b]

0
> max { P(0)] s pespan{x’, x7, .., x7n} }
Pl [a, b]
4. PROOEFS

Proof of Lemma 3.3. By the Paley—Wiener Theorem

Flz) = j:f(t) e di

for some f'e L,[ —9,J]. Now if
P(t)y=ag+ Y, aje ',
k=1
then
f(t)ye *"dt

" roroa=af ity af

k=1 s
=aoF(0)+ Y a,F(il,)=ay=P(0).

Hence by the Cauchy—Schwartz Inequality and the L, inversion theorem of
Fourier transforms, we obtain

[P < Sl 2yr —6.03 1P Ly —o,01 S NFN ) 1Pl g 5,61
and the lemma is proved. ||

Proof of Lemma 3.2. We define

sin(6z/3) N z \ sin(o,z/2;) o _ [sin(z/4) 4
re = (05 %5a), 1 0- () )

k=N+1
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where i is the imaginary unit. It is a straightforward calculation that
FeE°, F(0)=1, F(il,) =0, k=1,2,..
and

(0t/3) N 1
|F<r)|\s‘“&/’3/ n( ) (eR.

k=1 Ok
Hence Lemma 3.3 implies that

3¢ N 1
Pl < T1(242) 1Pl o

k=1

— 2t

for every Pespan{e %', e~"", ..} with ¢:= |~ sint|; (m). |

Proof of Theorem 2.3. When A=[1—¢, 1], the theorem follows from

Lemma 3.2 by the substitution x:e °e'. The general case follows from
Lemma 3.1. ||

Proof of Theorem 2.1. Let
6:= —1log(l —e¢). (4.1)

Observe that N in Theorem 2.1 can be chosen so that

]S — 1\
N._K 3 > J+1. (42)

Also, g, in Lemma 3.2 is of the form

ok*
3N’

O-k =
Let M + 1 be the smallest value of ke N for which
1 AN
—<1 that i —< 1.
o <1, at is, JEF;

Note that

|8
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If 0 <M < N, then

()

k=1

1)
() 1,)<0) () 7
<9e;N> JPT

5 GG e

< (3(20))™ 3V M < (3(20))",

N

N

and the theorem follows by (4.1),(4.2), and Theorem 2.1.
If N< M, then

TG )= (5
(5)<(5) (6)

N
(9N m\N 9e“>N<<5(oc—l)
B 12

N

N

(1 —a)\ (1 —a) N
; ) )

9e\N /(o —1) N< e (o —1)\V
5) () <)

and the theorem follows by (4.1), (4.2), and Theorem 2.1.
If M =0, then

<

N 1 N
I1 <2+>< []3=3"
k=1 Ok k=1

and the theorem follows by (4.1), (4.2), and Theorem 2.1. |

Proof of Theorem 2.2. Let neN be fixed We define y, :=kn*"!,
k=0,1,... Let T,(x):=(3(x—1))" and

oa—1 ne—1

—1= El :3”11> e span{x’, x71, ..., x”n}.
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Then, by Lemma 3.4,

sup {IMO)I : pespan{x’, x*, .} } <1201 _ 10,(0)]

<=
Hp”[l—n,l] HQ;:H[]—::,]]

Now let n be the smallest integer satisfying n*~'>¢~". Since (1 —¢&)' is
bounded away form 0 on (0, 1/2], the result follows. [
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