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Let 4 :=(*k)�
k=0 be a sequence of distinct nonnegative real numbers with *0 :=0

and ��
k=1 1�*k<�. Let * # (0, 1) and = # (0, 1&*) be fixed. An earlier work of the

authors shows that

C(4, =, *) :=sup[&p&[0, *] : p # span[x*0, x*1, ...],

m([x # [*, 1] : | p(x)|�1])�=]

is finite. In this paper an explicit upper bound for C(4, =, *) is given. In the special
case *k :=k:, :>1, our bounds are essentially sharp. � 1998 Academic Press

.
1. INTRODUCTION

In this paper 4 :=(*k)�
k=0 always denotes a sequence of real numbers

satisfying

0=*0<*1<*2< } } } .
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In [1] a Remez-type inequality for Mu� ntz polynomials

p(x)= :
n

k=0

akx*k

or equivalently for Dirichlet sums

P(t)= :
n

k=0

ake&*k t

is established. The most useful form of this inequality states that for every
sequence (*k)�

k=0 satisfying ��
k=0 1�*k<�, there exists a constant C(4, =)

depending only on 4 and = (and not on n, *, or A) so that

&p&[0, *]�C(4, =) &p&A

for every Mu� ntz polynomial p, as above, associated with the sequence
(*k)�

k=0 , and for every set A/[*, 1] of Lebesgue measure at least =>0.
Throughout this paper & }&A denotes the uniform norm on A/R.

Using this Remez-type inequality, we resolved two reasonably long
standing conjectures in [1]. In this paper we give an explicit upper bound
for the best possible C(4, =) in the above Remez-type inequality for non-
dense Mu� ntz spaces. Theorem 2.3 extends an inequality of Schwartz [4] in
two directions. Theorem 2.1 offers a more explicit bound for the sequences
4 := (k: )�

k=0 , : > 1. The sharpness of the Remez-type inequality of
Theorem 2.1 is shown by Theorem 2.2.

2. RESULTS

Theorem 2.1. Let *k :=k:, k=0, 1, ..., :>1. Let * # (0, 1), = # (0, 1&*),
and =�1�2. There exists a constant c:>0 depending only on : so that

&p&[0, *]�exp(c: =1�(1&:)) &p&A

for every p # span[x*0, x*1, ...] and for every set A/[*, 1] of Lebesgue
measure at least =>0.

The next theorem shows that the inequality of Theorem 2.1 is essentially
the best possible.

Theorem 2.2. Let *k := k:, k = 0, 1, ..., : > 1. For every : > 1 and
= # (0, 1�2], there exists a constant c:>0 depending only on : and Mu� ntz
polynomials

0{ p= p:, = # span[x*0, x*1, ...]
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depending only on : and = so that

| p(0)|�exp(c:=1�(1&:)) &p&[1&=] .

Theorem 2.1 is a special case of the following more general, but less
explicit result.

Theorem 2.3. Suppose 0=*0<*1<*2< } } } and ��
k=0 1�*k<�. Let

* # (0, 1) and = # (0, 1&*). Let $ :=& 1
2log(1&=). Let N # N be chosen so

that

:
�

k=N+1

1
*k

�
$
3

.

Let

_k :=A*k with A :=
$

3N
.

Then, with c :=&t&1 sin t&L2(R ,

&p&[0, *]�
3c
$

`
N

k=1
\2+

1
_k+ &p&A

for every p # span[x*0, x*1, ...] and for every set A/[*, 1] of Lebesque
measure at least =>0.

3. LEMMAS

Our first lemma shows that C(4, =) in the Remez-type inequality is
related to a much simpler (Chebyshev-type) extremal problem. This is
proved in [1, 2].

Lemma 3.1. Suppose 0=*0<*1<*2< } } } , \ # (0, 1), and = # (0, 1&\).
Then

sup[&p&[0, *] : p # span[x*0, x*1, ...], m[x # [*, 1] : | p(x)|�1]�=]

=sup { | p(0)|
&p&[1&=, 1]

: p # span[x*0, x*1, ...]= .

Our key lemma is the following.
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Lemma 3.2. Suppose 0=*0<*1<*2< } } } and ��
k=0 1�*k<�. Given

$ # (0, 1), let N # N be chosen so that

:
�

k=N+1

1
*k

�
$

12
.

Let

_k :=A*k with A :=
$

3N
.

Then

|P(�)|�
3c
$

`
N

k=1
\2+

1
_k+ &P&[&$, $]

for every P # span[e&*0 t, e&*1t, ...] with c :=&t&1 sin t&L2(R) .

In the proof of Lemma 3.2 we will need the following observation.

Lemma 3.3. Let 0=*0<*1<*2< } } } . Suppose

(1) F # E$ & L2(R);

(2) F(i*k)=0, k=1, 2, ... (i is the imaginary unit);
(3) F(0)=1.

Then

|P(�)|�&F&L2(R) &P&L2[&$, $]

for every P # span[e&*0 t, e&*1t, ...].

An entire function f is called a function of exponential type $ if there
exists a constant c depending only on f so that

| f (z)|�c exp($ |z| ), z # C.

The collection of all such entire functions of exponential type $ is denoted
be E$. The Paley�Wiener Theorem (see, for example, [3]) characterizes
the functions F which can be written as the Fourier transform of some
function f # L2[&$, $]. We will need it in the proof of Lemma 3.3.

Theorem (Paley�Wiener). Let $ # (0, �). Then f # E$ & L2(R) if and
only if there exists an f # L2[&$, $] so that

F(z)=|
$

&$
f (t) eitz dz.
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The following comparison theorem for Mu� ntz polynomials is proved in
[2]. We will need it in the proof of Theorem 2.3.

Lemma 3.4. Let 4 :=(*k)�
k=0 and 1 :=(#k)�

k=0 be increasing sequences
of nonnegative real numbers with *0=0, #0=0, and *k�#k for each k. Let
0<a<b. Then

max { | p(0)|
&p&[a, b]

: p # span[x*0, x*1, ..., x*n]=
�max { | p(0)|

&p&[a, b]

: p # span[x#0, x#1, ..., x#n]= .

4. PROOFS

Proof of Lemma 3.3. By the Paley�Wiener Theorem

F(z)=|
$

&$
f (t) eitz dt

for some f # L2[&$, $]. Now if

P(t)=a0+ :
n

k=1

ak e&*k t,

then

|
$

&$
f (t) P(t) dt=a0 |

$

&$
f (t) dt+ :

n

k=1

ak |
$

&$
f (t) e&*k t dt

=a0F(0)+ :
n

k=1

ak F(i*k)=a0=P(�).

Hence by the Cauchy�Schwartz Inequality and the L2 inversion theorem of
Fourier transforms, we obtain

|P(�)|�& f &L2[&$, $] &P&L2[&$, $]�&F&L2(R) &P&L2[&$, $]

and the lemma is proved. K

Proof of Lemma 3.2. We define

F(z) :=
sin($z�3)

$z�3
`
N

k=1
\\1&

z
i*k+

sin(_kz�*k)
_kz�*k + `

�

k=N+1
\1&\sin(z�*k)

sin i +
4

+ ,
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where i is the imaginary unit. It is a straightforward calculation that

F # E$, F(0)=1, F(i*k)=0, k=1, 2, ...

and

|F(t)|�
sin($t�3)

$t�3
`
N

k=1
\2+

1
_k+ , t # R.

Hence Lemma 3.3 implies that

|P(�)|�
3c
$

`
N

k=1
\2+

1
_k+ &P&[&$, $]

for every P # span[e&*0t, e&*1t, ...] with c :=&t&1 sin t&L2(R) . K

Proof of Theorem 2.3. When A=[1&=, 1], the theorem follows from
Lemma 3.2 by the substitution x: e&$e&t. The general case follows from
Lemma 3.1. K

Proof of Theorem 2.1. Let

$ := & 1
2log(1&=). (4.1)

Observe that N in Theorem 2.1 can be chosen so that

N :=\\$(:&1)
12 +

1�(1&:)

�+1. (4.2)

Also, _k in Lemma 3.2 is of the form

_k=
$k:

3N
.

Let M+1 be the smallest value of k # N for which

1
_k

<1, that is,
3N
k:$

�1.

Note that

M :=\\3N
$ +

1�:

� .
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If 0<M<N, then

`
N

k=1
\2+

1
_k+= `

N

k=1
\2+

3N
$k:+

�\ `
M

k=1

9N
$k:+\ `

N

k=M+1

3+�\9N
$ +

M

\M
= +

&:M

3N&M

=\9e:N
$ +

M

M&:M3N&M

�\9e:N
$ +

M

\1
2 \

3N
$ +

1�:

+
&:M

3N&M

�(3(2e):)M 3N&M�(3(2e):)N,

and the theorem follows by (4.1),(4.2), and Theorem 2.1.
If N�M, then

`
N

k=1
\2+

1
_k += `

N

k=1
\2+

3N
$k:+

�\ `
N

k=1

9N
$k:+�\9N

$ +
N

\N
e +

&:N

=\9e:N1&:

$ +
N

�\9e:

$ +
N

\\$(:&1)
12 +

1�(1&:)

+
(1&:) N

�\9e:

$ +
N

\$(:&1)
12 +

N

�\3e:(:&1)
4 +

N

,

and the theorem follows by (4.1), (4.2), and Theorem 2.1.
If M=0, then

`
N

k=1
\2+

1
_k+� `

N

k=1

3=3N,

and the theorem follows by (4.1), (4.2), and Theorem 2.1. K

Proof of Theorem 2.2. Let n # N be fixed. We define #k :=kn:&1,
k=0, 1, ... . Let Tn(x) :=( 1

2 (x&1))n and

Qn(x) :=Tn \ 2xn:&1

1&(1&=)n:&1&
1+(1&=)n :&1

1&(1&=)n:&1+
n

# span[x#0, x#1, ..., x#n].
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Then, by Lemma 3.4,

sup { | p(0)|
&p&[1&=, 1]

: p # span[x*0, x*1, ...]=�
|Qn(0)|

&Qn&[1&=, 1]

=|Qn(0)|

=\ 1
1&(1&=)n:&1+

n

.

Now let n be the smallest integer satisfying n:&1�=&1. Since (1&=)1�= is
bounded away form 0 on (0, 1�2], the result follows. K
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